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We analyze the motion of solitons in a self-attractive Bose-Einstein condensate, loaded into a quasi-one-
dimensional parabolic potential trap, which is subjected to time-periodic modulation with an amplitude« and
frequencyV. First, we apply the variational approximation, which gives rise to decoupled equations of motion
for the center-of-mass coordinate of the soliton,jstd, and its widthastd. The equation forjstd is the ordinary
Mathieu equationsMEd sit is an exact equation that does not depend on the adopted ansatzd, the equation for
astd being a nonlinear generalization of the ME. Both equations give rise to the same map of instability zones
in the s« ,Vd plane, generated by the parametric resonancessPRsd, if the instability is defined as the onset of
growth of the amplitude of the parametrically driven oscillations. In this sense, the double PR is predicted.
Direct simulations of the underlying Gross-Pitaevskii equation give rise to a qualitatively similar but quanti-
tatively different stability map for oscillations of the soliton’s widthastd. In the direct simulations, we identify
the soliton dynamics as unstable if the instabilitysagain, realized as indefinite growth of the amplitude of
oscillationsd can be detected during a time comparable with, or smaller than, the lifetime of the condensate
stherefore accessible to experimental detectiond. Two-soliton configurations are also investigated. It is con-
cluded that multiple collisions between solitons are elastic, and they do not affect the instability borders.
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I. INTRODUCTION

The experimental observations of solitons in effectively
one-dimensionals1Dd Bose-Einstein condensatessBECsd
with attractive interactions between atomsf1,2g make the
study of soliton dynamics in this medium a highly relevant
subject. In a permanent form, solitons can be created in a
“cigar-shaped” condensate, subjected to tight transverse and
loose longitudinal trapping; see, e.g., a relevant discussion in
Ref. f3g and references therein. The soliton may perform
harmonic oscillations, as a quasiparticle, in a trap with a
longitudinal parabolic potential profilesin more sophisticated
settings, including an additional optical lattice periodic po-
tential, and also the possibility of repulsive interactions be-
tween atoms in the condensate, the oscillatory motion of
one- and two-dimensional BEC solitons was studied in detail
in the recent worksf4,5g, respectivelyd. Thus a natural way
to test various dynamical properties of the systemsin particu-
lar, manifestations of possible resonancesd is to use a mag-
netic trap whose strength is periodically modulated in time
f6,7g. This can be readily implemented by applying a mixture
of dc and ac magnetic fields to the condensate. Another pos-
sibility would be the periodic modulation of the nonlinear
coefficient through the atomics-wave scattering length.
Resonances in spherically symmetric trapped Bose-Einstein
condensates under a periodically varying atomic scattering
length were considered in a recent paperf8g.

The motion of a soliton in a 1D trap with time-modulated
strength is an issue of straightforward interest for realization
in experiments. Recently, this problem was considered in
Ref. f9g for the case of rapid modulation with a large fre-
quencyV. For this case, an effective equation of motion was

derived by means of an averaging procedure, which, in par-
ticular, predicts the possibility of a stable equilibrium in an
inverted trap, corresponding to a negative sign in front of the
potential term in the Gross-Pitaevskii equationsGPEd s4d
ssee belowd. The existence of such a state was corroborated
by direct simulations of the full equation. However, paramet-
ric resonancessPRsd, which are the subject of the present
work, were not dealt with in Ref.f9g, as the resonance cannot
take place in the large-V limit. Resonances in collective os-
cillations of a 1DrepulsiveBEC due to periodic modulation
of the nonlinear coefficient and trap frequency were investi-
gated inf10g, in both the high density limit described by the
mean-field GPE, and the low density Tonks-Girardeau re-
gime described by the nonlinear Schrödinger equation with
quintic nonlinearity.

In this work, we aim to study PRs in the motion of soli-
tons in a 1D condensate withattractive nonlinearity. Obvi-
ously, the most interesting situation is that when mean-field
effects, accounted for by the GPE in its capacity of a partial
differential equationsPDEd, can alter the resonances, if com-
pared to the relatively simple approximation which amounts
to an ordinary differential equationsODEd fin particular, the
Mathieu equationsMEdg. In this sense, the PR in the motion
of the soliton’s center of mass is of lesser interest, as the
corresponding ODE is an exact equation, decoupled from
PDE effectsf6g sthe Ehrenfest theoremd. A more promising
direction is to study resonant effects in internal vibrations of
the soliton, as in this case the corresponding ODE is only an
approximation. Besides that, in the latter case the PRs will be
resonances in a truly nonlinear system, as the corresponding
ODE is a nonlinear one. This, in effect, implies the consid-
eration of a double parametric resonance: it will be demon-
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strated below that PR-induced instabilities set in simulta-
neously in the ODEs describing the evolution of the soliton’s
width and center-of-mass position.

Actually, the onset of the instability, in the form of per-
manent growth of the amplitude of parametrically driven os-
cillations, is the most important manifestation of the PR.
Accordingly, in the case of the ME, if it is cast in the from of
Eq. s13d ssee belowd, the PRs of different ordersn=1,2, . . .
generate well-known instability zones in the plane ofsV ,«d,
at values close toVPR

snd=2Î2/n f11g. The main result of the
present work will be summarized in the form of a similar but
quantitatively different map of instability zones for intrinsic
vibrations of the soliton and oscillations of its center of mass,
found from direct simulations of the GPEs4d. The double PR
takes place in the overlapping regions of the two zones.

The analysis developed in this work has common features
with the study of intrinsic oscillations in the three-
dimensionals3Dd BEC with repulsivenonlinearity, trapped
in a parabolic potential with time-modulated strength. This
problem was considered in Refs.f6g and f8g, which also
employed the variational approximationsVA d to predict the
evolution of the condensate’s size. The corresponding equa-
tion derived in Ref.f6g for the radial sizeastd of the conden-
sate differs from our Eq.s10d, derived below for the soliton’s
size, by an opposite sign in front of the term proportional to
N, and by its powersit was,a−4, due to the 3D character of
the problem considered inf6gd. In that work, an instability
map was drawn only on the basis of the ODE results. Here
we present the PDE-based mapsand the model is different,
due to the different dimension and the attractive sign of the
nonlinearityd.

The rest of the paper is organized as follows. In Sec. II we
describe the model and derive the variational equations. Sec-
tion III presents basic results for the PR in the dynamics of a
soliton trapped in a time-modulated parabolic potential. In
Sec. IV, we consider a configuration with two identical soli-
tons created in the trap, concluding that multiple collisions
between the solitons do not inflict any damage on them. The
paper is concluded by Sec. V.

II. THE MODEL AND VARIATIONAL APPROXIMATION

The dynamics of a BEC in the mean-field approximation
at zero temperature is governed by the 3D GPE

i"
]C

]t
= F−

"2

2m
¹2 + Vsx,y,zd +

4p"2asN

m
uCu2GC, s1d

whereCsr ,td is the macroscopic wave function of the con-
densate normalized so thateuCsr du2dr =1, N is the total num-
ber of atoms,m is the atomic mass,as is thes-wave scatter-
ing length sbelow we shall be concerned with an attractive
BEC for whichas,0d, and

Vsx,y,zd =
m

2
fvx

2x2 + v'
2 sy2 + z2dg s2d

is the axially symmetric trapping potential which provides
for tight confinement in the transverse planesy,zd, as com-
pared to loose axial trapping, assumingvx

2/v'
2 !1. The con-

densate trapped in such a potential acquires a highly elon-
gated formscigar shaped.

When the transverse confinement is strong enough, so that
the transverse oscillation quantum"v' is much greater than
the characteristic mean-field interaction energy per particle
NuasuuCu2, the dynamics is effectively one dimensional. In
this case, the wave function may be effectively factorized as
Csx,y,z,td=csx,tdfsy,zd, where fsy,zd=expf−sy2

+z2d /2a'
2 g /Îpa' is the normalized ground state of the 2D

harmonic oscillator in the transverse direction, witha'

=Î" /mv' being the corresponding transverse harmonic-
oscillator length. Inserting the factorized expression into the
3D GPE s1d, and integrating it over the transverse plane
sy,zd, one derives the effective 1D GPEf12g
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where we have neglected the zero-point energy of the trans-
verse motion"v', and defined the coefficient of the 1D
nonlinearity, g1D=4p"2asm

−1e ufsy,zdu4dy dz=2as"v'. Es-
sentially the same 1D equation can be derived in another
situation, when the nonlinearity is much larger than the trans-
verse kinetic energyf13g.

We now assume the axial parabolic trap to be time depen-
dent ,fstdx2, and rewrite Eq.s3d using the dimensionless
variables t→vxt, x→x/ax, ax=Î" /mvx, and the rescaled
wave functionc→Î2Nuasuv' /axvxc,

i
]c

]t
+

1

2

]2c

]x2 − fstdx2c + ucu2c = 0, s4d

fstd ; 1 + « cossVtd, s5d

where the strength of the constants“dc” d parabolic trap is
scaled to be 1,« andV being the amplitude and frequency of
the time-dependents“ac”d part of the trap’s strength. The
amplitude, which is defined to be positive, obeys the obvious
restriction«ø1, as we do not consider the case of an expul-
sive potential.

To estimate actual values of the time and space units, we
take the experimental parameters from Ref.f2g. In this ex-
periment, a single soliton in a7Li condensate ofN=43103

atoms was created in an axially symmetric parabolic trap
with v'=2p3710 Hz andvx=2p350 Hz ssubsequently,
the axial potential was made expulsive, which formally cor-
responds to an imaginary confining frequencyvx=2pi
378 Hzd. The s-wave scattering length, at the value of the
magnetic field B=420 G swhich was used to make the
atomic interaction attractive, via the Feshbach resonanced,
was as=−0.21 nm. With the mass of a7Li atom, m=11.65
310−27 kg, we have the following time and space units:
vx

−1.3310−3 s, ax=Î" /mvx.12 mm, the trap’s aspect ra-
tio beingvx/v'.7310−2.

As is well known, there is a drastic difference in the sta-
bility between the 3D and 1D attractive condensates, as col-
lapse occurs in the 3D case at a critical value of the param-
eter k=Nuasu /aHO saHO is the harmonic-oscillator length
characterizing the strength of the magnetic trapd, correspond-
ing to a situation when the attractive forces overwhelm the
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kinetic energy, and the condensate rapidly shrinks. For in-
stance, in isotropic 3D trapssvx=v'=v0, aHO=Î" /mv0d,
the Gaussian ansatz for the wave function predicts collapse
at kcr=Nuasu /aHO=0.671 f14g, while direct numerical solu-
tion of the GPEs1d yields kcr.0.575 f15g. In a waveguide
trap without longitudinal confinementsvx=0d, the collapse
occurs at a slightly different valuekcr=Nuasu /a'=0.627,
which was found by applying the imaginary-time relaxation
method to the GPEs1d f16g. Unlike strong3D collapse,weak
collapse in the 2D GPE occurs if the peak density exceeds a
critical valuesucu2dcr=11.7/s8pNuasu /a'd f3g. In the present
work, simulations of the 1D equations4d were run for values
of the parameters that ensure the absence of transverses2Dd
or 3D collapse in the full underlying 3D system.

Numerical simulations of Eq.s4d were performed by
means of two versions of the operator-splitting technique:sid
using fast Fourier transformf17g and sii d with the Crank-
Nicholson schemef18g. These two numerical methods pro-
duced practically identical results. We employed a finite do-
main −LøxøL, with absorbers installed near the edges to
prevent reentering of a small amount of linear waves emitted
by the perturbed soliton. The domain length 2L was suffi-
cient to detect indefinite growthsat least by a factor of tend of
amplitudes of oscillations of the soliton’s center-of-mass co-
ordinate and width due to the parametric resonances.

In the absence of the potential termfstd=0, Eq.s4d gives
rise to a commonly known family of soliton solutions,

csolsx,td = h sechfhsx − jdgexpH i

2
fsh2 − j̇2dt + j̇xgJ , s6d

wherej and j̇ are, respectively, the instantaneous coordinate
and velocity of the soliton’s center, while the amplitudeh
determines the number of atomssnormd of the condensate,

Ns ; E
−`

+`

ucsxdu2dx= 2h, s7d

which is the single dynamical invariant of Eq.s4d with the
time-dependent coefficientfstd. The normNs is connected to
the “real” number of atomsN in the original 3D GPEs1d as

Ns = 2N
uasuv'

axvx
. s8d

For the above mentioned experimental settings off2g the
relation is Ns.1.115310−3N, so that approximatelyN
=900 atoms needed to have the norm of the solitonNs=1
used in our numerical simulations.

The soliton’s dynamics in the trapping potential can also
be described by means of the variational approximation,
which is a well-known tool for the consideration of solitons
in nonintegrable modelsf19g. In particular, the VA for the
three-dimensional GPE with repulsive nonlinearity and time-
modulated strength of the trap was elaborated in Ref.f6g. In
this work, we adopt the following ansatz for a perturbed 1D
soliton:

csx,td = h sechSx − j

a
Dexphiff + wsx − jd + bsx − jd2gj,

s9d

where h, a, j, f, w, and b are time-dependent real varia-
tional parameters. The norms7d corresponding to the ansatz
s9d is Ns=2h2a. The subsequent derivation is straightfor-
ward, ending up with a system of dynamical equations for
the soliton’s width and coordinate:

ä =
4

p2a3 −
2Ns

p2a2 − 2fstda, s10d

j̈ = − 2fstdj, s11d

where the overdot stands ford/dt. The other dynamical vari-

ables are related to these byw= j̇ andb= ȧ/ s2ad.
Equations10d was previously considered in the context of

disintegration of optical solitons in fibers with randomly
varying parametersf20g, and recently with regard to collec-
tive oscillations of a 1D repulsive BEC under time-varying
trap potential and nonlinearityf10g. Equations similar tos10d
and s11d can also be obtained by means of the moment
method for the evolution of an optical beam in a system of
nonlinear graded-index fibersf21g. In that work, strong reso-
nances in the beamwidth oscillations were found, when the
fiber’s graded index is a piecewise-constant periodic function
of the propagation coordinate.

The fact that Eq.s11d for j is decoupled from the other
one is a general result, which is valid irrespective of the
applicability of the VA. Indeed, Eq.s11d for the soliton’s
center-of-mass coordinate, which is defined as

jstd ; Ns
−1E

−`

+`

xucsx,tdu2dx, s12d

whereNs is the conserved norms7d, can be derived as an
exactcorollary of the GPE with astime-dependentd parabolic
potential f6g. In fact, this is the Ehrenfest theorem in the
present contextsits validity for the nonlinear Schrödinger
equation with a parabolic potential was proved in Ref.f22gd.

In the case of a harmonic time modulation of the trap’s
strength as per Eq.s5d, the equation of motions11d for the
soliton’s center is the Mathieu equationf11g,

j̈ + 2f1 + « cossVtdgj = 0. s13d

As is commonly known, the ME gives rise to parametric
resonances whenV is close to the values

VPR
snd = 2Î2/n, s14d

n=1 andn.1 sn is integerd corresponding to the fundamen-
tal and higher-order resonances, respectively. In fact, Eq.
s10d with the function fstd taken from Eq.s5d may be re-
garded as a nonlinear generalization of the ME, which also
gives rise to PRs.

It is relevant to mention that, in the low-density limit
sNs!p2a2/2d, the second term on the right-hand side of Eq.
s10d can be dropped. Such a simplified equation is equivalent
to anexactequation for the width, which was derived in Ref.
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f7g swithout the use of the VA or other approximationd from
the two-dimensional GPE with repulsive nonlinearity and
parabolic trapping potential. It is known that solutions of the
latter equation can be expressed, also in an exact form, in
terms of solutions of the linear ME. Therefore, in the limit
when the underlying GPEs4d goes over into the linear
Schrödinger equation, which corresponds toas=0, the PRs in
Eq. s10d are exactly the same as in Eq.s11d. However, Eq.
s10d cannot be reduced to the linear ME in the general case
sasÞ0d.

III. INSTABILITY ZONES FOR THE TRAPPED SOLITON

A. The soliton in the time-independent trap
and nonresonant motion in the time-modulated one

First, we test the accuracy of the VA, which was briefly
described above, in the dc case, i.e., with«=0 in Eq.s4d. As
mentioned above, the equation forjstd is independent of the
adopted ansatz, in compliance with the Ehrenfest theorem.
By contrast, Eq.s10d for the width of a solitonastd stems
from the VA with the ansatzs9d. The latter equation coin-
cides with one for a unit-mass particle in the potential

Usad =
2

p2a2 −
2Ns

p2a
+ fstda2.

In the dc case,fstd;1, the value of the widtha of a station-
ary soliton corresponds to the minimum of this potential,
which is determined by the real positive root of the equation

a4 +
Ns

p2a −
2

p2 = 0. s15d

Obviously, when the first term in this equation may be ne-
glected, we have a prediction for the width of a soliton co-
inciding with that in Eqs.s6d and s7d, a=1/h=2/Ns. There-
fore, the VA is more accurate for a soliton whose width is
narrow in comparison with the harmonic-oscillator length of
the parabolic trap. For instance, atNs=5 we havea=0.37

from Eq. s15d, which is close toa=0.4 following from the
full equations7d.

In direct simulations of the GPEs4d, the initial condition
was taken as the solitons6d with some off-center displace-
ment j0 and zero velocity:c0sxd=h sechfhsx−j0dg. Then,
the soliton’s coordinate, as a function of time, was extracted
from a numerical solution of Eq.s4d as per the definition
s12d, and the widthastd was identified as follows:

FIG. 1. Evolution of the widthastd of the relatively broad soli-
ton s6d, with the initial amplitudeh0=1.5, off-center shiftj0=0.3,
and zero initial velocity, in the model with a dc parabolic traps«
=0d. In this figure and below, the solid and dashed lines show,
respectively, the results obtained from direct simulations of the GPE
s4d, and from numerical solutions of Eqs.s10d and s11d.

FIG. 2. Nonlinear oscillations of the soliton’s width, in the case
of temporal modulation of the parabolic trap’s strength moderately
close to the parametric resonance, withfstd=1+« cossVtd, «=0.5,
andV=2.43. The initial condition isc0sxd=h0 sechfh0sx−j0dg with
h0=0.5 andj0=1.0. The solid and dashed lines correspond, respec-
tively, to the simulations of the PDEs4d and ODEs10d.

FIG. 3. A double parametric resonance shows up as simulta-
neous permanent growth of the amplitudes of oscillations ofjstd
and astd. Numerical simulations of the GPEs4d with the initial
conditionc0sxd=h0 sechfh0sx−j0dg, whereh0=1.0 andj0=0.5, are
compared to numerical solutions of ODEss10d and s11d. The har-
monic trap is periodically modulated at the fundamental-resonance
frequencyV=2Î2, with the amplitude«=0.2. The thick and thin
continuous lines refer to PDE simulations, while corresponding
dashed lines refer to ODE simulations.

BAIZAKOV et al. PHYSICAL REVIEW E 71, 036619s2005d

036619-4



a2std ; Ns
−1E

−`

+`

fx − jstdg2ucsx,tdu2dx s16d

frecall thatNs is the conserved norm of the solution defined
in Eq. s7dg.

If the initial soliton is narrowfas0d!1, ȧs0d=0g, integra-
tion of Eq.s10d yieldsastd which is virtually identical to that
following from the solution of Eq.s4d, with regard to the
definitions16d. However, foras0d,1, i.e., for a broader soli-
ton, the discrepancy between the ODE and PDE results is
notable, as is illustrated by Fig. 1.

Next, we compare the evolution of the soliton’s widthastd
in a trap including an ac parts«Þ0d, but still not very close
to the PR, as found from the solution of the variational Eq.
s10d, and from the full PDE simulations as per Eq.s16d. A
typical example of the comparison is displayed in Fig. 2.

As may be expected in a nonlinear system, periodic forc-
ing with a frequency close to the resonance results in com-
plex dynamics. The frequency of the oscillations depends on
the amplitude, which leads to detuning the system from the
resonance as the amplitude grows. The periodic slow dynam-
ics of the amplitude in Fig. 2 is a manifestation of this phe-
nomenon swhich is usually called a nonlinear resonance
f23gd. This general character of the evolution is qualitatively
similar in the ODE and PDE results; some discrepancy be-
tween them is explained by a deformation of the soliton per-
forming the oscillations with a large amplitude in the para-

bolic trap fin the case shown in Fig. 2, the maximum
amplitude of the oscillations ofjstd is <4.5g. The deforma-
tion breaks the symmetry of the soliton’s shape, which was
assumed in the ansatzs9d; hence Eq.s10d, which was derived
from the symmetric ansatz, may become inaccurate. Despite
the intrinsic vibrations, the soliton oscillating in the parabolic
trap, whose strength is periodically modulated in time, re-
mains completely stable in this regime.

B. The double parametric resonance

As was mentioned above, the trivial solutionj;0 of the
ME loses its stability in certain zones in the parameter plane
sV ,«d close to the PR pointss14d f11g. In that case,jstd
features oscillations with a permanently growing amplitude.
The solution of Eq.s10d, which is a nonlinear generalization
of the ME, is always an oscillatory one, and it may be ex-
pected that, also close to the pointss14d, a periodic solution
will develop an instability that will also manifest itself in the
unlimited growth of the amplitude of the oscillations. This
expectation is corroborated by simulations of Eq.s10d. As
was explained in the Introduction, we always identify the
PR-induced instability as a permanent growth of the ampli-
tude of oscillations in simulations of the corresponding equa-
tion, and this definition makes the onset of the instability in
Eqs.s11d ands10d identical. Thus, adouble parametric reso-
nancetakes place in the system.

In direct simulations of the full GPEs4d, double PR is
observed indeed, in the form of growth of the amplitude of

FIG. 4. Instability zones, as found from direct
simulations of the Gross-Pitaevskii equations4d.
In the area covered by open circles, the oscillat-
ing soliton develops an intrinsic instability, in the
form of a growing amplitude of the internal vi-
brations. Shown by crosses are regions where the
soliton demonstrates external instability. The
double parametric resonance occurs where both
areas overlap. The dynamics is identified as un-
stable if the onset of the amplitude growth is de-
tected during the simulation time, of up tot
,1000. In physical units, this time estimates the
actual lifetime of the condensate, under experi-
mentally realistic conditions.
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the oscillatory motion of the solitonsexternal instabilityd,
and of the amplitude of its intrinsic vibrationssintrinsic in-
stabilityd, as shown in Fig. 3. In accordance with the fact that
Eq. s11d is an exact corollary of Eq.s4d, the onset of the
external instability is observed precisely at frequencies
where it is predicted by simulations of the linear Mathieu Eq.
s11d. In Fig. 3, one can see some difference between the
oscillation law forjstd as found from the direct simulations
of the GPE and from the numerical integration of the ODE
s11d. An explanation for this is that the soliton under periodic
perturbation emits linear waves which are absorbed on the
domain boundaries. This process is enhanced under paramet-
ric resonance, and as a result, the norm of the soliton slowly
decreasessnote that the Ehrenfest theorem presumes a con-
stant normd. In the experiment, a similar role may be played
by evaporation of atoms from a finite-size trap. Detuning
from the resonance due to such mass loss can be explored by
dint of soliton perturbation theory based on the inverse scat-
tering transformf24g, which should be a subject of separate
consideration.

Instability zones found from direct simulations of the
GPE s4d are presented in Fig. 4. To collect data for this
figure, the simulations were run long enoughstypically, up to
t,1000, which in physical units corresponds to the lifetime
of the condensate,,3 sd, in a harmonic trap with the con-
fining frequencyvx.2p350 Hz. Such a long simulation
time makes it possible to unambiguously distinguish between
stable and unstable behaviors. A practical criterion for the
onset of the instability was that the oscillation amplitude
would grow, at least, by a factor of 5 in the course of the
evolution.

The instability zones shown in Fig. 4 reveal three separate
PRs, viz., the fundamental one atV=2.82, obviously corre-
sponding ton=1 in Eq. s14d, and two higher-order PRs, at
V=1.41 and 0.94, which correspond ton=2 and 3, respec-
tively. The instability growth rate rapidly decreases for
higher-order resonances, which explains why the PRs corre-
sponding ton.3 cannot be easily spotted by dint of direct
simulations running for a finite time. This also explains the
fact that the instability “tongues” corresponding to the PRs
with n=2 and 3 do not extend to very small values of«.

The borders of the intrinsic-instability zones reported in
Fig. 4 are, generally, similar to the borders of the external
instability srecall that the latter are strictly tantamount to the
instability borders in the parametric plane of the ordinary
MEd, except for the notable upward shift of all the intrinsic-
instability zones, including the one corresponding to the fun-
damental PR atV=2.82. One reason for this shift is that,
unlike the ODEss11d ands10d, in the GPE the oscillations of
the soliton’s position and, especially, its intrinsic vibrations
give rise to emission of radiation. Although the emitted
waves are almost invisible in the simulationssas mentioned
above, they are absorbed at the edges of the computation
domaind, the radiation loss induces an effective dissipation in
the systemswhich, in principle, can be accounted for in more
sophisticated, but rather cumbersome, versions of the VA
f25gd. Then Eq.s10d will turn into a weakly damped nonlin-
ear ME. It is known that weak friction indeed shifts the in-
stability zones in the ME upward in«, without affecting the
resonant frequenciesf26g.

Finally, it is also relevant to stress that, although Fig. 4
displays what we define as instability zones, the soliton, even
after the amplitude of its intrinsic vibrations starts to grow,
doesnot feature self-destruction, remaining a coherent, al-
though unsteady, object. Eventually, it gets destroyed, but
only when it hits absorbers placed at the edges of the inte-
gration domainsas mentioned above, the absorbers emulate a
real physical feature—a finite size of the experimental setup
in which the BEC is trappedd.

IV. COLLISIONS BETWEEN OSCILLATING SOLITONS

In the experiment, it may be quite feasible to create sev-
eral solitons in one trapswhich was actually done in Ref.
f1gd; therefore it is relevant to analyze the dynamics of a
two-soliton state. As the solitons are expected to collide
many times, systematic simulations of this configuration will
also help to understand the nature of interactions between the
matter-wave solitons.

The results of the investigation of two-soliton configura-
tions can be summarized in a simple form: in all casessboth
off-resonance and near-resonant onesd, solitons easily sur-
vive multiple collisions, irrespective of the initial phase dif-
ference between them, which is evidence of the completely
elastic character of the collisions. In particular, no tangible
emission of radiation has been observed as a result of the
collisions.

If the individual soliton does not get into an instability
zone, then the periodically colliding pairsof identical soli-
tonsd remains stable as well. In the opposite case, when the
soliton develops the instability by itself, the two solitons col-
lide several times, while performing oscillations with a

FIG. 5. Two solitons in the parabolic trap.sad Multiple elastic
collisions in the nonresonant cases«=0.5, V=2.0d. sbd The case
when the individual soliton falls into the instability zone induced by
the fundamental parametric resonancesin this example,«=0.5 and
V=2.8d. In this case, the solitons elastically collide several times,
performing oscillations with an increasing amplitude, and then get
destroyed, hitting absorbers at the edges of the integration domain.
In both casessad and sbd, the Gross-Pitaevskii equations4d was
simulated with the initial configuration in the form of a pair of
in-phase solitonsc0sxd=hhsechfhsx−2pdg+sechfhsx+2pdgj, with
h=2.
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growing amplitude. Eventually, both of them get destroyed,
hitting the edge absorbers. Typical examples of this behavior
are displayed in Fig. 5.

V. CONCLUSION

In this work, we have analyzed oscillatory motion of soli-
tons in a quasi-1D self-attractive BEC, loaded into a para-
bolic potential trap, which is subjected to time-periodic
“management.” In the analytical approximation, the dynam-
ics of the soliton is governed by the decoupled evolution
equations for its center-of-mass coordinatejstd and width
astd. The former is the linear Mathieu equationswhich is an
exact equation that does not depend on the adopted ansatz, as
it follows from the Ehrenfest theoremd, and the latter is a
nonlinear version of the ME. Both equations give rise to the
same map of instability zonessgenerated by parametric reso-
nances of orders 1, 2, 3,…d, in terms of the amplitude« and
frequencyV of the periodic temporal modulation of the para-
bolic trap, if the instability is realized as permanent growth
of the amplitude of the parametrically driven oscillations.
Thus, double PR is expected in the system.

Direct simulations of the underlying Gross-Pitaevskii
equation give rise to qualitatively similar, but quantitatively
different instability maps for the intrinsic and external oscil-
lations of the soliton. The double parametric resonance oc-
curs in overlap areas of these two maps.

Two-soliton configurations were also investigated, with
the conclusion that multiple collisions between solitons do
not damage them. The collisions do not alter the borders of
the instability zones either.
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